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1 Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
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Abstract. Final state qq̄ interactions may give origin to non-zero values of the off-diagonal element ρ1,−1

of the helicity density matrix of vector mesons produced in e+e− annihilations, as confirmed by recent
OPAL data on φ and D∗’s. Predictions are given for ρ1,−1 of several mesons produced at large z and small
pT , i.e. collinear with the parent jet; the values obtained for φ and D∗ are in agreement with data.

1 Introduction

The spin properties of hadrons inclusively produced in
high energy interactions are related to the fundamental
properties of quarks and gluons and to their elementary
interactions in a much more subtle way than unpolarized
quantities; the usual hadronization models – successful in
predicting unpolarized cross-sections – may not be ade-
quate to describe spin effects, say the fragmentation of a
polarized quark.

In [1] and [2] it was pointed out how the final state
interactions between the q and q̄ produced in e+e− anni-
hilations – usually neglected, but indeed necessary – might
give origin to non zero spin observables which would other-
wise be forced to vanish. The off-diagonal matrix element
ρ1,−1 of vector mesons may be sizeably different from zero
[1] due to a coherent fragmentation process which takes
into account qq̄ interactions; the incoherent fragmentation
of a single independent quark leads to zero values for such
off-diagonal elements. The same situation is not true for
spin 1/2 baryons, for which the coherent fragmentation
process only induces corrections which vanish in the limit
of small transverse momentum, pT , of the quark inside the
jet [2]. Both predictions, a non zero value of ρ1,−1 for D∗
and possibly φ particles [3], and a value ρ+− ' (pT /z

√
s)

for Λ (i.e., its transverse polarization) [4] have recently
been confirmed experimentally.

We consider here in greater details the coherent frag-
mentation process of qq̄ produced at LEP, where the quarks
are strongly polarized; we are actually able to give predic-
tions for ρ1,−1 of several vector mesons V provided they
are produced in two jet events, carry a large momentum
or energy fraction z = 2EV /

√
s, and have a small trans-

verse momentum pT inside the jet. Our estimates are in
agreement with the existing data and are crucially related

both to the presence of final state interactions and to the
Standard Model couplings of the elementary e−e+ → qq̄
interaction.

In the next section we review the formalism to com-
pute the helicity density matrix of a hadron produced in
e−e+ → qq̄ → h+X processes and give analytical expres-
sions for the nondiagonal matrix element ρ1,−1 in case of
final spin 1 hadrons; in Sect. 3 we obtain numerical esti-
mates and in Sect. 4 we make some further comments and
conclusions.

2 ρ1,−1(V ) in the process
e−e+ → qq̄ → V + X

The helicity density matrix of a hadron h inclusively pro-
duced in the two jet event e−e+ → qq̄ → h + X can be
written as [1,2]

ρλ
h
λ′

h
(h) =

1
Nh

∑
q,X,λ

X
,λq,λq̄,λ′

q,λ′
q̄

Dλ
h
λ

X
;λq,λq̄

×ρλq,λq̄ ;λ′
q,λ′

q̄
(qq̄) D∗

λ′
h
λ

X
;λ′

q,λ′
q̄
, (1)

where ρλq,λq̄ ;λ′
q,λ′

q̄
(qq̄) is the helicity density matrix of the

qq̄ state created in the annihilation of the unpolarized e+

and e−,

ρλq,λq̄ ;λ′
q,λ′

q̄
(qq̄) =

1
4Nqq̄

∑
λ−,λ+

Mλqλq̄ ;λ−λ+

×M∗
λ′

qλ′
q̄ ;λ−λ+

. (2)

The M ’s are the helicity amplitudes for the e−e+ → qq̄
process and the D’s are the fragmentation amplitudes, i.e.
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the helicity amplitudes for the process qq̄ → h + X; the∑
X,λX

stands for the phase space integration and the sum
over spins of all the unobserved particles, grouped into a
state X. The normalization factors Nh and Nqq̄ are given
by

Nh =
∑

q,X;λ
h
,λ

X
,λq,λq̄,λ′

q,λ′
q̄

Dλ
h
λ

X
;λq,λq̄

×ρλq,λq̄ ;λ′
q,λ′

q̄
(qq̄) D∗

λ
h
λ

X
;λ′

q,λ′
q̄

=
∑

q

Dh
q , (3)

where Dh
q is the usual fragmentation function of quark q

into hadron h [see also comment after (22)], and

Nqq̄ =
1
4

∑
λq,λq̄ ;λ−,λ+

|Mλqλq̄ ;λ−λ+
|2 . (4)

The center of mass helicity amplitudes for the e−e+ →
qq̄ process can be computed in the Standard Model and
are given by

Mλqλq̄ ;λ−λ+
(s, θ) = e2 δλ−,−λ+

δλq,−λq̄
×

×
{[

eq − g
Z
(s) gl

V
gq

V

]
(1 + 4λ−λq cos θ)

+ g
Z
(s)

[
2 gl

V
gq

A
(λ− cos θ + λq) (5)

+ 2 gl
A

gq
V
(λ− + λq cos θ) − gl

A
gq

A
(cos θ + 4λ−λq)

]}
,

where
√

s is the total e+e− c.m. energy, θ the q production
angle (i.e. the angle between the incoming e− and the
outgoing q) and eq is the quark charge. Lepton and quark
masses have been neglected with respect to their energies
and we report here for convenience the Standard Model
coupling constants:

gl
V

= −1
2

+ 2 sin2 θ
W

gl
A

= −1
2

gu,c,t
V

=
1
2

− 4
3

sin2 θ
W

gu,c,t
A

=
1
2

(6)

gd,s,b
V

= −1
2

+
2
3

sin2 θ
W

gd,s,b
A

= −1
2

g
Z
(s) =

1
4 sin2 θ

W
cos2 θ

W

s

(s − M2
Z
) + iM

Z
Γ

Z

·

From (2), (4) and (5) one finds the explicit expressions
of the only non zero elements of ρ(qq̄):

ρ+−;+−(qq̄) = 1 − ρ−+;−+(qq̄)

=
a′

q(s) (1 + cos2 θ) − b′
q(s) cos θ

µq(s) (1 + cos2 θ) + ηq(s) cos θ
(7)

ρ+−;−+(qq̄) = ρ∗
−+;+−(qq̄)

=
[aq(s) − ibq(s)] sin2 θ

µq(s) (1 + cos2 θ) + ηq(s) cos θ
(8)

where +,− stand for helicity +1/2 and −1/2 and where,
for an arbitrary total energy

√
s,

a′
q(s) = e2

q + |g
Z
(s)|2 (g

V
− g

A
)2q (g2

V
+ g2

A
)l

−2eq Re[g
Z
(s)] gl

V
(g

V
− g

A
)q

b′
q(s) = 4gl

A
(g

V
− g

A
)q

[ |g
Z
(s)|2 gl

V
(g

V
− g

A
)q

−eq Re[g
Z
(s)]]

aq(s) = e2
q + |g

Z
(s)|2 (g2

V
− g2

A
)q (g2

V
+ g2

A
)l

−2eq gl
V
gq

V
Re[g

Z
(s)] (9)

bq(s) = −2eq gl
V
gq

A
Im[g

Z
(s)]

µq(s) = 2
[

e2
q + |g

Z
(s)|2 (g2

V
+ g2

A
)l(g2

V
+ g2

A
)q

−2eq gl
V
gq

V
Re[g

Z
(s)]

]
ηq(s) = 8gl

A
gq

A

[
2 |g

Z
(s)|2 gl

V
gq

V
− eq Re[g

Z
(s)]

]

which at
√

s = M
Z

read

a′
q = e2

q + ζ2 (g
V

− g
A
)2q (g2

V
+ g2

A
)l

b′
q = 4ζ2 (g

A
g

V
)l (g

V
− g

A
)2q

aq = e2
q + ζ2 (g2

V
− g2

A
)q (g2

V
+ g2

A
)l

bq = 2eq ζ gl
V
gq

A
(10)

µq = 2[ e2
q + ζ2 (g2

V
+ g2

A
)l (g2

V
+ g2

A
)q]

ηq = 16ζ2 (g
A
g

V
)l (g

A
g

V
)q

ζ =
M

Z

4 Γ
Z

sin2 θ
W

cos2 θ
W

·

Equations (7) and (8) hold for the production of a
quark with flavour q at a c.m. angle θ, defined as the
angle between the incoming negative lepton and the out-
going quark; in the pT → 0 limit this is the same angle
as the production angle of the observed hadron h. How-
ever, h can be produced also in the fragmentation of an
antiquark q̄ and the

∑
q in (1) and (3) takes into account

also this possibility (q = u, d, s, c, b, ū, d̄, s̄, c̄, b̄): the helic-
ity density matrix ρ(q̄q) for the production of an antiquark
at the angle θ can be obtained from ρ(qq̄) with the simple
replacements:

ρ+−;+−(q̄q, θ) = ρ−+;−+(qq̄, π − θ)

ρ+−;−+(q̄q, θ) = ρ∗
+−;−+(qq̄, π − θ) . (11)

The expressions (8), (9) and (10) are exact and contain
both electromagnetic and weak interaction contributions.
However, at LEP energy

√
s = M

Z
, the weak contribution

dominates, ζ � 1 in (10); if one also takes into account
that ηq is depressed by the small value of gl

V
a simple

approximate and useful formula for ρ+−;−+ is given by
[for an exact value at

√
s = M

Z
see (40)]

ρZ
+−;−+(qq̄) ' 1

2
(g2

V
− g2

A
)q

(g2
V

+ g2
A
)q

sin2 θ

1 + cos2 θ
· (12)
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Equation (12) clearly shows the θ dependence of ρ+−;−+.
This approximate expression is the same both for ρ(qq̄)
and ρ(q̄q). In the case of pure electromagnetic interactions
(
√

s � M
Z
) one has exactly:

ργ
+−;−+(qq̄) =

1
2

sin2 θ

1 + cos2 θ
· (13)

Notice that (12) and (13) have the same angular depen-
dence, but a different sign for the coefficient in front, which
is negative for the Z contribution [see (6)].

By using the above equations for ρ(qq̄) [and ρ(q̄q)] into
(1) one obtains the most general expression of ρ(h) in
terms of the qq̄ spin state and the unknown fragmentation
amplitudes [2]. Such expression can be greatly simplified if
one considers the production of hadrons almost collinear
with the parent jet: the qq̄ → h+X fragmentation is then
essentially a c.m. forward process and the unknown D am-
plitudes must satisfy the angular momentum conservation
relation [5]

Dλ
h
λ

X
;λq,λq̄

D∗
λ′

h
λ

X
;λ′

q,λ′
q̄

∼
(

sin
θh

2

)|λh−λX−λq+λq̄|+|λ′
h−λX−λ′

q+λ′
q̄|

, (14)

where θh is the angle between the hadron momentum,
h = zq + pT , and the quark momentum q, that is

sin θh ' 2pT

z
√

s
· (15)

The bilinear combinations of fragmentation amplitudes
contributing to ρ(h) are then not suppressed by powers of
(pT /(z

√
s)) only if the exponents in (14) are zero; which

yields

λX = λh − (λq − λq̄) = λ′
h − (λ′

q − λ′
q̄) . (16)

In the pT → 0 limit one has then the simple result for
the nondiagonal density matrix elements of spin 1 mesons
[1,2]:

Re[ρ1,−1(V )]

=
1

Nh

∑
X,q

D10;+− D∗
−10;−+ Re[ρ+−;−+(qq̄)] (17)

Im[ρ1,−1(V )]

=
1

Nh

∑
X,q

D10;+− D∗
−10;−+ Im[ρ+−;−+(qq̄)] (18)

with

Nh =
∑

q

Dh
q =

∑
q,X;λ

h
,λ

X

[
|Dλ

h
λ

X
;+−|2 ρ+−;+−(qq̄)

+|Dλ
h
λ

X
;−+|2 ρ−+;−+(qq̄)

]
. (19)

Equations (17) and (18) explicitly show that the co-
herent quark fragmentation allows non zero off-diagonal

helicity density matrix elements which, for vector mesons,
survive also in the small pT limit; the other off-diagonal
matrix elements for spin 1 particles and all off-diagonal
matrix elements for spin 1/2 particles are bound, via (14),
to vanish at small pT /

√
s values [1,2]. Recent experimental

data have confirmed both the non-zero value of ρ1,−1(D∗)
[3] and the small value of ρ+−(Λ) [4].

In the next section we give numerical estimates of ρ1,−1
for several vector mesons, exploiting (17) and the fact
that, at least for valence quark contributions, the depen-
dence on the fragmentation amplitudes either cancels out
or can be expressed in terms of other measured quantities.

3 Numerical estimates of ρ1,−1(V )
at

√
s = M

Z

Let us consider (17)-(19). Despite our ignorance of the
fragmentation amplitudes we see that in the pT → 0 limit,
due to (14) and (16), only few of them give a leading con-
tribution; moreover, the fragmentation is a parity conserv-
ing forward process, so that the fragmentation amplitudes
must satisfy the relationship [5]

D−λ
h
−λ

X
;−+ = (−1)Sh+SX+λh−λX Dλ

h
λ

X
;+− , (20)

where Sh and SX are respectively the spin of hadron h
and of the unobserved system X (the intrinsic parities of
the initial and final states must be the same). In particular
(20) for spin 1 hadrons yields

D−10;−+ = (−1)SX D10;+− . (21)

Notice that the parity relationship (20) and (7) allow
to write:

Dh
q =

∑
X;λ

h
,λ

X

|Dλ
h
λ

X
;+−|2 , (22)

which is the fragmentation function of quark q into hadron
h, whose spin is not observed; such fragmentation func-
tion is independent of the quark polarization, described
by ρ(qq̄). Instead, the fragmentation functions of a polar-
ized quark q into a hadron h with helicity λh are given
by:

D
h,λh
q =

∑
X;λ

X

[
|Dλ

h
λ

X
;+−|2 ρ+−;+−(qq̄)

+|Dλ
h
λ

X
;−+|2 ρ−+;−+(qq̄)

]
= D

h,λh
q,+ ρ+−;+−(qq̄) + D

h,λh
q,− ρ−+;−+(qq̄) , (23)

which is consistent with
∑

λ
h

D
h,λh
q = Dh

q and where

D
h,λh

q,λq
is the fragmentation function of quark q with helic-

ity λq into hadron h with helicity λh; ρλq,−λq ;λq,−λq
(qq̄)

is the probability for q to have helicity λq.
Taking into account (16) and (20) the above fragmen-

tation functions read:

Dh
q =

∑
X

[
|D10;+−|2 + |D0−1;+−|2 + |D−1−2;+−|2

]
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= Dh,1
q,+ + Dh,0

q,+ + Dh,−1
q,+ (24)

Dh,1
q =

∑
X

[
|D10;+−|2 ρ+−;+−(qq̄)

+|D12;−+|2 ρ−+;−+(qq̄)
]

= Dh,1
q,+ ρ+−;+−(qq̄) + Dh,1

q,− ρ−+;−+(qq̄) (25)

Dh,0
q =

∑
X

|D0−1;+−|2 = Dh,0
q,+ (26)

Dh,−1
q =

∑
X

[
|D12;−+|2 ρ+−;+−(qq̄)

+|D10;+−|2 ρ−+;−+(qq̄)
]

= Dh,1
q,− ρ+−;+−(qq̄) + Dh,1

q,+ ρ−+;−+(qq̄) . (27)

We now assume that, at least for valence quarks:

Dh,1
q,− = Dh,−1

q,+ = 0 (28)

Dh,0
q,+ = αV

q Dh,1
q,+ . (29)

The first of these assumptions simply means that quarks
with helicity 1/2 (−1/2) cannot fragment into vector mes-
ons with helicity −1 (+1). This is true for valence quarks
assuming vector meson wave functions with no orbital an-
gular momentum, like in SU(6). The second assumption
is also true in SU(6) with αV

q = 1/2 for any valence q and
V . Rather than taking αV

q = 1/2 we prefer to relate the
value of αV

q to the value of ρ0,0(V ) which can be or has
been measured. In fact, always in the pT → 0 limit, one
has, from (1), (16), (20), (28) and (29):

ρ0,0(V ) =

∑
q αV

q Dh,1
q,+∑

q (1 + αV
q ) Dh,1

q,+

· (30)

If αV
q is the same for all valence quarks in V (αV

q = αV )
one has, for the valence quark contribution:

αV =
ρ0,0(V )

1 − ρ0,0(V )
· (31)

Notice that the SU(6) value αV
q = 1/2 correspond to

ρ0,0 = 1/3, that is no alignment, A = (1/2)(3ρ0,0−1) = 0,
for the vector meson.

If we now use (21), (24), (28), (29) into (17) and (18)
we obtain

ρ1,−1(V ) =

∑
q,X (−1)S

X |D10;+−|2 ρ+−;−+(qq̄)∑
q,X (1 + αV

q ) |D10;+−|2 · (32)

The numerator in the above equation depends on the
squared amplitude |D10;+−|2 for the qq̄ → V + X forward
fragmentation process and on S

X
. The qq̄ state is such

that J = Jz = 1; the final undetected system X must
then have λX = 0 with S

X
= 0, 1 or 2, the only states

which can combine with the Sh = λh = 1 vector meson
state to give a V X spin state with J = Jz = 1. On a simple
statistical basis these 3 possible states have respectively

relative probabilities 1, 1/6 and 1/30. One can then con-
clude that the S

X
= 0 state dominates and approximate

the above equation (32) with

ρ1,−1(V ) '
∑

q DV,1
q,+ ρ+−;−+(qq̄)∑

q (1 + αV
q ) DV,1

q,+

· (33)

The actual value (32) should only be slightly smaller, due
to some contribution from S

X
= 1.

Again, if only one flavour contributes or if we can
assume that αV

q does not depend on the valence quark
flavour, (31) further simplifies (33) to

ρ1,−1(V ) ' [1 − ρ0,0(V )]

∑
q DV,1

q,+ ρ+−;−+(qq̄)∑
q DV,1

q,+

· (34)

We shall now consider some specific cases in which we
expect (34) to hold; let us remind once more that our
conclusions apply to spin 1 vector mesons produced in
e−e+ → qq̄ → V +X processes in the limit of small pT and
large z, i.e., to vector mesons produced in two jet events
(e−e+ → qq̄) and collinear with one of them (pT = 0),
which is the jet generated by a quark which is a valence
quark for the observed vector meson (large z). These con-
ditions should be met more easily in the production of
heavy vector mesons.

Let us then start from the cases V = B∗±,0, D∗±,0. In
such a case one can safely assume that the fragmenting
quark is the heavy one so that (34) applies and one has:

ρ1,−1(B
∗+) ' [1 − ρ0,0(B

∗+)] ρ+−;−+(b̄b)

ρ1,−1(B
∗−) ' [1 − ρ0,0(B

∗−)] ρ+−;−+(bb̄) (35)

ρ1,−1(B
∗0) ' [1 − ρ0,0(B

∗0)] ρ+−;−+(b̄b)

ρ1,−1(D
∗+) ' [1 − ρ0,0(D

∗+)] ρ+−;−+(cc̄)

ρ1,−1(D
∗−) ' [1 − ρ0,0(D

∗−)] ρ+−;−+(c̄c) (36)

ρ1,−1(D
∗0) ' [1 − ρ0,0(D

∗0)] ρ+−;−+(cc̄)

Similarly one obtains:

ρ1,−1(φ) ' 1
2

[1 − ρ0,0(φ)] [ρ+−;−+(ss̄) + ρ+−;−+(s̄s)]

(37)

where we have assumed Dφ,1
s,+ = Dφ,1

s̄,+, as it should be.
For ρ’s, assuming all valence quark fragmentation func-

tions to be the same, one has

ρ1,−1(ρ
+) ' 1

2
[1 − ρ0,0(ρ

+)] [ρ+−;−+(uū) + ρ+−;−+(d̄d)]

ρ1,−1(ρ
0) ' 1

4
[1 − ρ0,0(ρ

0)] [ρ+−;−+(uū) + ρ+−;−+(dd̄)

+ ρ+−;−+(ūu) + ρ+−;−+(d̄d)] (38)

ρ1,−1(ρ
−) ' 1

2
[1 − ρ0,0(ρ

−)] [ρ+−;−+(dd̄) + ρ+−;−+(ūu)] .

The assumption that all valence quark fragmentation
functions are the same is very natural for ρ’s, but it might
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be weaker for K∗ mesons; if nevertheless we assume that,
at least at large z, DK∗+,1

s̄,+ = DK∗+,1
u,+ , and similarly for

K∗0 and K∗− , we have

ρ1,−1(K
∗+) ' 1

2
[1 − ρ0,0(K

∗+)]

×[ρ+−;−+(uū) + ρ+−;−+(s̄s)]

ρ1,−1(K
∗0) ' 1

2
[1 − ρ0,0(K

∗0)]

×[ρ+−;−+(dd̄) + ρ+−;−+(s̄s)] (39)

ρ1,−1(K
∗−) ' 1

2
[1 − ρ0,0(K

∗−)]

×[ρ+−;−+(ūu) + ρ+−;−+(ss̄)] .

A predominant contribution of the s quark would instead
lead to results similar to those found for B∗.

Equations (35)-(39) show how the value of ρ1,−1(V )
are simply related to the off-diagonal matrix element
ρ+−;−+(qq̄) of the qq̄ pair created in the elementary
e−e+ → qq̄ process; such off-diagonal elements would not
appear in the incoherent independent fragmentation of a
single quark, yielding ρ1,−1(V ) = 0.

We can now make numerical predictions by inserting
into the above equations the explicit values of ρ+−;−+(qq̄)
at

√
s = M

Z
, (8), (10) and (6) with sin2 θ

W
= 0.2237,

M
Z

= 91.19 GeV, Γ
Z

= 2.50 GeV [6]:

ρ+−;−+(uū) = −0.36 (1 − 0.013 i)

× sin2 θ

(1 + cos2 θ) + 0.29 cos θ

ρ+−;−+(ūu) = −0.36 (1 + 0.013 i)

× sin2 θ

(1 + cos2 θ) − 0.29 cos θ

ρ+−;−+(dd̄) = −0.17 (1 − 0.010 i)

× sin2 θ

(1 + cos2 θ) + 0.39 cos θ
(40)

ρ+−;−+(d̄d) = −0.17 (1 + 0.010 i)

× sin2 θ

(1 + cos2 θ) − 0.39 cos θ
·

The values for s, b and c quarks are respectively the same
as for d and u.

If we instead use for simplicity the approximate expres-
sions (12), valid at

√
s = M

Z
and which are the same for

ρ+−;−+(qq̄) and ρ+−;−+(q̄q), we have the simple results

ρ1,−1(B
∗±,0) ' −0.170 [1 − ρ0,0(B

∗)]
sin2 θ

1 + cos2 θ

= −(0.109 ± 0.015)
sin2 θ

1 + cos2 θ
(41)

ρ1,−1(D
∗±,0) ' −0.360 [1 − ρ0,0(D

∗)]
sin2 θ

1 + cos2 θ

= −(0.216 ± 0.007)
sin2 θ

1 + cos2 θ
(42)

ρ1,−1(φ) ' −0.170 [1 − ρ0,0(φ)]
sin2 θ

1 + cos2 θ

= −(0.078 ± 0.014)
sin2 θ

1 + cos2 θ
(43)

ρ1,−1(ρ
±,0) ' −0.265 [1 − ρ0,0(ρ)]

sin2 θ

1 + cos2 θ
(44)

ρ1,−1(K
∗±) ' −0.265 [1 − ρ0,0(K

∗)]
sin2 θ

1 + cos2 θ
(45)

ρ1,−1(K
∗0) ' −0.170 [1 − ρ0,0(K

∗)]
sin2 θ

1 + cos2 θ
(46)

where we have used ρ0,0(B
∗±,0) = 0.36±0.09, ρ0,0(D

∗±,0)
= 0.40 ± 0.02 and ρ0,0(φ) = 0.54 ± 0.08 [3]; no data are
available on ρ0,0(ρ) and ρ0,0(K

∗). Notice that in such ap-
proximation ρ1,−1(V ) is real and that the cos θ term in the
denominator of (8) has been neglected. This term would
induce small differences between the values of ρ1,−1(B

∗+)
[or ρ1,−1(D

∗+)] and ρ1,−1(B
∗−) [or ρ1,−1(D

∗−)]; it has
much smaller effects on the values of ρ1,−1(φ), ρ1,−1(ρ)
and ρ1,−1(K

∗).
Finally, in case one collects all meson produced at dif-

ferent angles in the full available θ range (say α < θ <
π − α, | cos θ| < cos α) an average should be taken in θ,
weighting the different values of ρ1,−1(θ) with the cross-
section for the e−e+ → V +X process; this amounts essen-
tially to weight the values of ρ+−;−+(qq̄; θ) appearing in
(35)-(39) and given in (40) or (12) with the cross-section
for the e−e+ → qq̄ process, proportional to the normaliza-
tion factor Nqq̄ given in (4). Such an average has a simple
analytical expression if one uses the approximate value
(12):

〈ρ1,−1(B
∗±,0)〉[α,π−α] ' −(0.109 ± 0.015)

×3 − cos2 α

3 + cos2 α
(47)

〈ρ1,−1(D
∗±,0)〉[α,π−α] ' −(0.216 ± 0.007)

×3 − cos2 α

3 + cos2 α
(48)

〈ρ1,−1(φ)〉[α,π−α] ' −(0.078 ± 0.014)

×3 − cos2 α

3 + cos2 α
(49)

〈ρ1,−1(ρ
±,0)〉[α,π−α] ' −0.265 [1 − ρ0,0(ρ)]

×3 − cos2 α

3 + cos2 α
(50)

〈ρ1,−1(K
∗±)〉[α,π−α] ' −0.265 [1 − ρ0,0(K

∗)]

×3 − cos2 α

3 + cos2 α
(51)

〈ρ1,−1(K
∗0)〉[α,π−α] ' −0.170 [1 − ρ0,0(K

∗)]

×3 − cos2 α

3 + cos2 α
· (52)

We have explicitly checked that the full expression (40)
yields almost identical results [and a negligible imaginary
part].
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4 Comments and conclusions

We have computed, within a general factorization scheme,
the off-diagonal helicity density matrix element ρ1,−1 of
vector mesons produced in e−e+ → qq̄ → V +X annihila-
tion processes; such element can be – and in few cases has
been – measured via the angular distribution of two body
decays of the meson in its helicity rest frame. Our results
hold for small pT and large z hadrons, in particular we
expect them to hold for heavy mesons which should more
easily satisfy such requirements.

Our results for φ, (49), are in agreement with data,
Reρ1,−1(φ) = −0.11 ± 0.07 [3]; notice that such data refer
to values of z > 0.7 and cos α = 0.9, but still have large
errors. Our results for D∗, (48), have the same negative
sign, but are larger in magnitude than the value found by
the OPAL collaboration, Reρ1,−1(D

∗) = −0.039 ± 0.016
[3]. There are good reasons for that: data on D∗ are col-
lected for z > 0.5, and might still contain events to which
our calculations do not apply and for which one expects
ρ1,−1 = 0; one should also not forget that our predictions
are somewhat lessened (in magnitude) by contributions
from S

X
= 1 [see comment after (33)].

We notice that while the mere fact that ρ1,−1 differs
from zero is due to a coherent fragmentation of the qq̄
pair, the actual numerical values depend on the Stan-
dard Model coupling constants; for example, ρ1,−1 would
be positive at smaller energies, at which the one gamma
exchange dominates, while it is negative at LEP energy
where the one Z exchange dominates. ρ1,−1 has also a pe-
culiar dependence on the meson production angle, being
small at small and large angles and maximum at θ = π/2.

Such coherent effects in the fragmentation of quarks
might not play a role in unpolarized observables, where
they are usually neglected; however, they should be taken
into account when dealing with more subtle quantities like
off-diagonal spin density matrix elements. Many of these
effects vanish in the limit of small intrinsic momentum
of the hadron inside the jet, pT /Eh → 0; this happens,
for example, in the fragmentation of quarks into spin 1/2
hadrons [2]. The quantity considered here, instead, sur-
vives also in the small pT limit; we actually exploit such
a limit in order to make numerical predictions.

The recent data [3] are encouraging; it would be in-
teresting to have more and more detailed data, possibly
with a selection of final hadrons with the required features
for our results to hold. A measurement of the pT of final
hadrons and a study of the dependence of several observ-
ables on its value would offer many more possibilities of
testing both the dynamics of the fragmentation process
and unusual aspects of the basic interactions; a measure-
ment of ρ+−(Λ) with a selection of Λ particles with pT 6= 0
is already available [4] and in agreement with our expec-
tations.
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